6 Desember 2015


Berikut ini merupakan contoh-contoh soal Fluida Statis mengenai Tekanan Hidrostatik dan Hukum Archimedes. Soal-soal ini Saya dapatkan dari Dosen Mekanika Fluida di bangku perkuliahan. Dan Saya lampirkan juga jawaban-jawabannya di post paling bawah, kalo bisa jangan di scroll ke paling bawah dulu yooo !!



Siap bermain-main dengan Otak Kiri ?? Persiapkan Logika Anda !!

SOAL

[1] Seseorang membuat tabung seperti pada gambar dibawah. Lalu mengisinya dengan air raksa (warna hitam), air (warna abu) dan minyak warna putih. Jika massa jenis merkuri, air dan minyak masing-masing adalah 13000, 1000 dan 800 (kg/m3). Berapa tekanan di titik 1, 2, 3 dan 4 ?



[2] Sebuah keluarga terdiri dari ayah, ibu dan dua orang anak, dengan masing-masing massanya adalah 70, 60, 20 dan 10 (kg). Mereka mempunyai sebuah kolam renang dibelakang rumah mereka. Ayah ingin membuat sebuah perahu sederhana dari papan kayu (dgn massa jenis = 500 kg/m3) yang dapat terapung ketika dinaiki empat orang anggota keluarga tersebut. Ayah lalu memotong sebuah papan dengan ukuran panjang x lebar dengan 2 x 2 (m). Jika massa jenis air 1000 kg/m3. Hitung tinggi papan kayu agar air tidak membasahi permukaan yang akan ditempati keempat anggota keluarga tersebut ?




[3] Seorang tukang emas ingin membuat sebuah bola berongga yang terbuat dari emas murni. Tentukanlah jari-jari dalam dan luar bola emas agar  terapung setengahnya diatas air ? Anggap massa jenis air, udara dan emas adalah 1000, 1 dan 19300 (kg/m3)

[4] Sebongkah es terapung didalam gelas berisi penuh. Ketika es meleleh, apakah ada air yang tumpah dari gelas? Jelaskan logika Anda?
   


JAWABAN

Posted on Minggu, Desember 06, 2015 by Unknown

1 comment

5 Desember 2015

Seperti yang kita ketahui bahwa Mekanika Fluida mempelajari fluida dalam tingkat kelompok-kelompok partikelnya, bukan dari partikelnya. Dan pada kesempatan kali ini, Saya akan sedikit sharing mengenai Pergerakan dari Suatu Elemen Fluida Dalam Tinjauan Partikel-partikelnya, dan materi ini saya dapatkan di bangku perkuliahan dan referensi lainnya. Oke.. Don’t Go Anywhere Brohh!!

Ada 4 macam jenis gerak fluida, yaitu :
a) Streamline
b) Streakline
c) Pathline
d) Streamtube

Streamline, Streakline,Pathline dan Streamtube adalah tools yang paling baik dan cocok untuk menggambarkan aliran dan memvisualisasikan aliran. Berikut pengertian dan penjelasan mengenai hal tersebut.

a) Streamline

            Adalah garis yang tengensial pada setiap titik pada kecepatan dan pada waktu tertentu dengan syarat tidak berpotongan satu sama lainnya, dimana setiap garis singgung pada setiap titik dalam garis tersebut menyatakan arah kecepatan aliran.


(Gambar 1.) Streamlines



(Gambar 2.) Streamline Definition

Dan berikut ini persamaannya :














 b) Streakline

            Adalah garis yang menghubungkan semua partikel yang telah melewati posisi euler yang benar dan tepat. Adapun gambar skema nya adalah sebagai berikut :

(Gambar 3.) Streaklines

c) Pathline

            Adalah garis jejak/jejak partikel sebagai fungsi waktu. Pathline juga dapat dikatakan garis yang dilalui partikel tertentu dalam suatu peroide. Dan berikut ini gambar skema dari Pathline :



(Gambar 4.) Pathlines

Adapun bentuk persamaan dari pathline :


d) Streamtube

            Adalah garis - garis streamline yang berada pada suatu pipa yang membentuk suatu aliran pipa di dalamnya dan memiliki kecepatan vektor.


(Gambar 5.) Streamtube


Sekian penjelasan mengenai Pergerakan Aliran suatu Elemen Fluida dalam Tinjauan Partikel-partikelnya.
Semoga bermanfaat
Thank’s

Posted on Sabtu, Desember 05, 2015 by Unknown

No comments

4 Desember 2015


Postingan ini merupakan postingan lanjutan dari Persamaan Bernoulli, jika Anda belum membacanya silahkan klik tulisan yang berwarna coklat ini Persamaan Bernoulli. Jika Anda sudah membacanya mari kita lanjutkan..

Postingan kali ini membahas tentang contoh-contoh simpel penerapan dari Hukum Bernoulli yang saya dapatkan dari bangku kuliah. Oke Check it Out Gaess!!

Penerapan dari Hukum Bernoulli beragam-ragam dalam kehidupan sehari-hari. Penerapan dari Hukum Bernoulli sebagian besar dimanfaatkan dalam bidang ilmu teknik atau ilmu yang berkaitan dengan aliran fluida.

Berikut merupakan contoh-contoh simpel penerapan Hukum Bernoulli.

1)  Teorema Terocelli

(Gambar 1.) Kecepatan aliran zat cair pada lubang dipengaruhi oleh ketinggian lubang.




Persamaan Bernoulli dapat digunakan untuk menentukan kecepatan zat cair yang keluar dari lubang pada dinding tabung (Gambar 1.). Dengan menganggap diameter lubang, maka permukaan zat cair pada tabung turun perlahan-lahan, sehingga kecepatan v1 dapat dianggap nol. Titik 1 (permukaan) dan 2 (lubang) terbuka terhadap udara sehingga tekanan pada kedua titik sama dengaan tekanan atmosfer, P1 = P2 , sehingga persamaan Bernoulli dinyatakan :




 
Persamaan [1] disebut teori Toricelli, yang menyatakan bahwa kecepatan aliran zat cair pada lubang sama dengan kecepatan benda yang jatuh bebas dari ketinggian yang sama.


Posted on Jumat, Desember 04, 2015 by Unknown

No comments

Pada kesempatan kali ini saya masih membahas tentang Fluida Dinamis yaitu salah satu hukum (konsep dasar) Mekanika Fluida yang disebut dengan Persamaan Bernoulli.

Persamaan Bernoulli adalah persamaan yang berhubungan dengan Tekanan (P), Kecepatan aliran fluida (v) dan Ketinggian (h) yang menggunakan konsep Usaha (W) dan Energi (E).

Asas Bernoulli menyatakan bahwa “semakin besar kecepatan fluida, maka semakin kecil tekanannya dan sebaliknya jika semakin kecil kecepatan fluida maka semakin besar tekanannya.” (Daniel Bernoulli 1700-1782).



Gambar 1. Konservasi Energi pada Aliran Fluida

Perhatikan Gambar 1 diatas. Fluida mengalir melalui pipa yang luas penampang dan ketinggiannya berbeda. Fluida mengalir dari penampang A1 ke ujung pipa dengan penampang A2 karena adanya perbedaan tekanan kedua ujung pipa. Apabila massa jenis fluida ρ, laju aliran fluida pada penampang A1 adalah v1 , dan pada penampang A2 sebesar v2. Bagian fluida sepanjang s1 = v1 . t bergerak ke kanan yang ditimbulkan tekanan P1 oleh gaya sebesar  F1 =  P1.A1 . Setelah selang waktu t sampai pada penampang A2 sejauh s2 = v2 . t . Gaya F1 melakukan usaha sebesar :
W1 = F1 . s1  = P1 . A1 . s1
Sementara itu, gaya F2 melakukan usaha sebesar ;
W2 = –F2 . s2  = –P2 . A2 . s2 ,    (tanda negatif karena gaya F2 berlawanan dengan arah gerak fluida)

Sehingga Usaha total, WT adalah : 


W adalah usaha total yang dilakukan pada bagian fluida yang volumenya V = A1 . s1 atau A2 . s2, yang akan menjadi tambahan Energy Mekanik total pada bagian fluida tersebut.
Hukum Konservasi Energy    EM = EK + EP
EK = ½ m.v2      (Energi Kinetik)
EP = m.g.h       (Energi Potensial)

Maka :













Sehingga :

Jadi, persamaaan pada nomer (2) adalah persamaan yang disebut Persamaan Bernoulli. Secara umum persamaan ini dapat dituliskan menjadi “bahwa tekanan didalam fluida yang bergerak juga dipengaruhi oleh kecepatan aliran fluida".

Keterangan :
P = tekanan (Pa atau N/m2)
h = ketinggian pipa dari tanah (m)
ρ = massa jenis fluida (kg/m3)
g = percepatan gravitasi (m/s2)
v = kecepatan aliran fluida (m/s)

Sekian pembahasan mengenai Fluida Dinamis mengenai Persamaan Bernoulli.
Semoga bermanfaat dan kurang lebihnya mohon maaf.
Thanks


Posted on Jumat, Desember 04, 2015 by Unknown

1 comment

27 November 2015

Postingan ini akan membahas tentang dasar-dasar Fluida Dinamis diantaranya adalah Persamaan Kontinuitas (Continuity).

Apa yang dimaksud dengan Fluida Dinamis? Dan Apa yang dimaksud dengan Persamaan Kontinuitas?

Fluida Dinamis adalah fluida yang berada dalam kondisi bergerak atau mengalir. Contohnya : aliran sungai, aliran angin dll. Sedangkan persamaan kontinuitas adalah persamaan yang menghubungkan kecepatan fluida dalam dari satu tempat ke tempat yang lain. Untuk memudahkan mempelajarinya fluida disini dianggap aliran tunak (steady) artinya mempunyai kecepatan yang konstan terhadap waktu dan alirannya tak termampatkan (incompressible) artinya kondisi aliran dimana kerapatan massa fluidanya tidak berubah.

Suatu saat nanti, Saya akan memposting tentang aliran-aliran fluida yang diklasifikasikan kedalam beberapa golongan.

Okee, kembali ke topik. Fenomena yang terjadi dalam persamaan kontinuitas adalah contoh yang paling mudah, air di selang ketika ujungnya dipencet, kecepatan air keluar akan lebih tinggi. Perubahan luas penampang dari lebih besar ke lebih kecil ini disebut Nozzle. Dan perubahan luas penampang dari kecil ke lebih besar disebut dengan Diffuser.



 
Gbr 1. Diffuser dan Nozzle

Mari kita lihat gambar berikut, ini :


Gbr 2. Skema Air Selang Ketika Dipencet Ujungnya.

Persamaan Kontinuitas adalah pernyataan matematis sederhana dari prinsip konservasi massa. Gambar diatas menunjukkan aliran fluida dalam sebuah pipa yang berbeda penampangnya. Kecepatan fluida pada penampang A1 adalah v1 dan pada penampang A2 kecepatannya  v2.

Dalam selang waktu Δt partikel-partikel fluida bergerak Δs1 = v1Δt sehingga massa fluida Δm1 yang melalui penampang A1 dalam waktu Δt adalah :
Δm1 = ρ.V = ρ.A1.v1. Δt 

Dengan cara yang sama, maka besarnya massa fluida Δm2 yang melalui penampang A2 adalah :
Δm2 = ρ.V = ρ.A2.v2. Δt

            Karena fluida ideal, maka massa fluida yang melalui penampang A1 = A2
dengan :
A1 = luas penampang 1 (m2)
A2 = luas penampang 2 (m2)
v1 = kecepatan aliran fluida pada penampang 1 (m/s)
v2 = kecepatan aliran fluida pada penampang 2 (m/s)
Pada persamaan kontinuitas, menyatakan bahwa kecepatan aliran fluida berbanding terbalik dengan luas penampangnya. Pada pipa yang luas penampang kecil, maka alirannya besar.
         
             Hasil kali A.v adalah debit, yaitu jumlah volume fluida yang mengalir tiap satuan waktu.

Dirumuskan : 
 


Karena A.v.Δt sama dengan V (volume), maka :

dengan :
Q = debit (m3/s)
V = volume fluida (m3)
t = waktu (s)


Contoh soal :


Diketahui air mengalir melalui sebuah pipa. Diameter pipa bagian kiri A1 = 10 cm dan bagian kanan A2 = 6 cm, serta kelajuan aliran air pada pipa bagian kiri v1 = 5 m/s. Hitunglah kelajuan aliran air yang melalui A2 !

Jawab :

Posted on Jumat, November 27, 2015 by Unknown

2 comments